Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(5): 053303, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649771

RESUMO

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10 MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments.

2.
Rev Sci Instrum ; 93(3): 033304, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364990

RESUMO

The response of the BAS-TR image plate (IP) was absolutely calibrated using a CR-39 track detector for high linear energy transfer Au ions up to ∼1.6 GeV (8.2 MeV/nucleon), accelerated by high-power lasers. The calibration was carried out by employing a high-resolution Thomson parabola spectrometer, which allowed resolving Au ions with closely spaced ionization states up to 58+. A response function was obtained by fitting the photo-stimulated luminescence per Au ion for different ion energies, which is broadly in agreement with that expected from ion stopping in the active layer of the IP. This calibration would allow quantifying the ion energy spectra for high energy Au ions, which is important for further investigation of the laser-based acceleration of heavy ion beams.

3.
Sci Rep ; 9(1): 4471, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872656

RESUMO

Protontherapy has emerged as more effective in the treatment of certain tumors than photon based therapies. However, significant capital and operational costs make protontherapy less accessible. This has stimulated interest in alternative proton delivery approaches, and in this context the use of laser-based technologies for the generation of ultra-high dose rate ion beams has been proposed as a prospective route. A better understanding of the radiobiological effects at ultra-high dose-rates is important for any future clinical adoption of this technology. In this study, we irradiated human skin fibroblasts-AG01522B cells with laser-accelerated protons at a dose rate of 109 Gy/s, generated using the Gemini laser system at the Rutherford Appleton Laboratory, UK. We studied DNA double strand break (DSB) repair kinetics using the p53 binding protein-1(53BP1) foci formation assay and observed a close similarity in the 53BP1 foci repair kinetics in the cells irradiated with 225 kVp X-rays and ultra- high dose rate protons for the initial time points. At the microdosimetric scale, foci per cell per track values showed a good correlation between the laser and cyclotron-accelerated protons indicating similarity in the DNA DSB induction and repair, independent of the time duration over which the dose was delivered.


Assuntos
Quebras de DNA de Cadeia Dupla , Fibroblastos/efeitos da radiação , Terapia com Prótons/instrumentação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Ciclotrons/instrumentação , Relação Dose-Resposta à Radiação , Fibroblastos/química , Fibroblastos/citologia , Humanos , Lasers , Estudos Prospectivos , Terapia com Prótons/efeitos adversos
4.
Rev Sci Instrum ; 86(12): 123302, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724017

RESUMO

The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

5.
Rev Sci Instrum ; 85(3): 033304, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689572

RESUMO

A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...